电力消耗预测对于一个国家的能源计划至关重要。在启用机器学习模型中,支持向量回归(SVR)已被广泛用于设置预测模型,因为其对看不见的数据的卓越概括。但是,预测建模的一个关键过程是特征选择,如果选择不正确的功能,这可能会损害预测准确性。在这方面,在本研究中采用了修改的离散粒子群优化(MDPSO)进行特征选择,然后构建了MDPSO-SVR混合模式来预测未来的电力消耗。与其他完善的对应物相比,MDPSO-SVR模型在两个现实世界中的电力消耗数据集中始终如一地表现最好,这表明用于功能选择的MDPSO可以提高预测准确性,并且配备了MDPSO的SVR可以是电力替代方案。消费预测。
translated by 谷歌翻译
Recent studies have shown that using an external Language Model (LM) benefits the end-to-end Automatic Speech Recognition (ASR). However, predicting tokens that appear less frequently in the training set is still quite challenging. The long-tail prediction problems have been widely studied in many applications, but only been addressed by a few studies for ASR and LMs. In this paper, we propose a new memory augmented lookup dictionary based Transformer architecture for LM. The newly introduced lookup dictionary incorporates rich contextual information in training set, which is vital to correctly predict long-tail tokens. With intensive experiments on Chinese and English data sets, our proposed method is proved to outperform the baseline Transformer LM by a great margin on both word/character error rate and tail tokens error rate. This is achieved without impact on the decoding efficiency. Overall, we demonstrate the effectiveness of our proposed method in boosting the ASR decoding performance, especially for long-tail tokens.
translated by 谷歌翻译
Optimal transport (OT) has become a widely used tool in the machine learning field to measure the discrepancy between probability distributions. For instance, OT is a popular loss function that quantifies the discrepancy between an empirical distribution and a parametric model. Recently, an entropic penalty term and the celebrated Sinkhorn algorithm have been commonly used to approximate the original OT in a computationally efficient way. However, since the Sinkhorn algorithm runs a projection associated with the Kullback-Leibler divergence, it is often vulnerable to outliers. To overcome this problem, we propose regularizing OT with the \beta-potential term associated with the so-called $\beta$-divergence, which was developed in robust statistics. Our theoretical analysis reveals that the $\beta$-potential can prevent the mass from being transported to outliers. We experimentally demonstrate that the transport matrix computed with our algorithm helps estimate a probability distribution robustly even in the presence of outliers. In addition, our proposed method can successfully detect outliers from a contaminated dataset
translated by 谷歌翻译
In the era of Internet of Things (IoT), network-wide anomaly detection is a crucial part of monitoring IoT networks due to the inherent security vulnerabilities of most IoT devices. Principal Components Analysis (PCA) has been proposed to separate network traffics into two disjoint subspaces corresponding to normal and malicious behaviors for anomaly detection. However, the privacy concerns and limitations of devices' computing resources compromise the practical effectiveness of PCA. We propose a federated PCA-based Grassmannian optimization framework that coordinates IoT devices to aggregate a joint profile of normal network behaviors for anomaly detection. First, we introduce a privacy-preserving federated PCA framework to simultaneously capture the profile of various IoT devices' traffic. Then, we investigate the alternating direction method of multipliers gradient-based learning on the Grassmann manifold to guarantee fast training and the absence of detecting latency using limited computational resources. Empirical results on the NSL-KDD dataset demonstrate that our method outperforms baseline approaches. Finally, we show that the Grassmann manifold algorithm is highly adapted for IoT anomaly detection, which permits drastically reducing the analysis time of the system. To the best of our knowledge, this is the first federated PCA algorithm for anomaly detection meeting the requirements of IoT networks.
translated by 谷歌翻译
Given the success with in-context learning of large pre-trained language models, we introduce in-context learning distillation to transfer in-context few-shot learning ability from large models to smaller models. We propose to combine in-context learning objectives with language modeling objectives to distill both the ability to read in-context examples and task knowledge to the smaller models. We perform in-context learning distillation under two different few-shot learning paradigms: Meta In-context Tuning (Meta-ICT) and Multitask In-context Tuning (Multitask-ICT). Multitask-ICT performs better on multitask few-shot learning but also requires more computation than Meta-ICT. Our method shows consistent improvements for both Meta-ICT and Multitask-ICT on two benchmarks: LAMA and CrossFit. Our extensive experiments and analysis reveal that in-context learning objectives and language modeling objectives are complementary under the Multitask-ICT paradigm. In-context learning objectives achieve the best performance when combined with language modeling objectives.
translated by 谷歌翻译
In this paper, we propose a novel architecture, the Enhanced Interactive Transformer (EIT), to address the issue of head degradation in self-attention mechanisms. Our approach replaces the traditional multi-head self-attention mechanism with the Enhanced Multi-Head Attention (EMHA) mechanism, which relaxes the one-to-one mapping constraint among queries and keys, allowing each query to attend to multiple keys. Furthermore, we introduce two interaction models, Inner-Subspace Interaction and Cross-Subspace Interaction, to fully utilize the many-to-many mapping capabilities of EMHA. Extensive experiments on a wide range of tasks (e.g. machine translation, abstractive summarization, grammar correction, language modelling and brain disease automatic diagnosis) show its superiority with a very modest increase in model size.
translated by 谷歌翻译
Task transfer learning is a popular technique in image processing applications that uses pre-trained models to reduce the supervision cost of related tasks. An important question is to determine task transferability, i.e. given a common input domain, estimating to what extent representations learned from a source task can help in learning a target task. Typically, transferability is either measured experimentally or inferred through task relatedness, which is often defined without a clear operational meaning. In this paper, we present a novel metric, H-score, an easily-computable evaluation function that estimates the performance of transferred representations from one task to another in classification problems using statistical and information theoretic principles. Experiments on real image data show that our metric is not only consistent with the empirical transferability measurement, but also useful to practitioners in applications such as source model selection and task transfer curriculum learning.
translated by 谷歌翻译
Summary quality assessment metrics have two categories: reference-based and reference-free. Reference-based metrics are theoretically more accurate but are limited by the availability and quality of the human-written references, which are both difficulty to ensure. This inspires the development of reference-free metrics, which are independent from human-written references, in the past few years. However, existing reference-free metrics cannot be both zero-shot and accurate. In this paper, we propose a zero-shot but accurate reference-free approach in a sneaky way: feeding documents, based upon which summaries generated, as references into reference-based metrics. Experimental results show that this zero-shot approach can give us the best-performing reference-free metrics on nearly all aspects on several recently-released datasets, even beating reference-free metrics specifically trained for this task sometimes. We further investigate what reference-based metrics can benefit from such repurposing and whether our additional tweaks help.
translated by 谷歌翻译
The quality of knowledge retrieval is crucial in knowledge-intensive conversations. Two common strategies to improve the retrieval quality are finetuning the retriever or generating a self-contained query, while they encounter heavy burdens on expensive computation and elaborate annotations. In this paper, we propose an unsupervised query enhanced approach for knowledge-intensive conversations, namely QKConv. There are three modules in QKConv: a query generator, an off-the-shelf knowledge selector, and a response generator. Without extra supervision, the end-to-end joint training of QKConv explores multiple candidate queries and utilizes corresponding selected knowledge to yield the target response. To evaluate the effectiveness of the proposed method, we conducted comprehensive experiments on conversational question-answering, task-oriented dialogue, and knowledge-grounded conversation. Experimental results demonstrate that QKConv achieves state-of-the-art performance compared to unsupervised methods and competitive performance compared to supervised methods.
translated by 谷歌翻译
In this paper, we carry out numerical analysis to prove convergence of a novel sample-wise back-propagation method for training a class of stochastic neural networks (SNNs). The structure of the SNN is formulated as discretization of a stochastic differential equation (SDE). A stochastic optimal control framework is introduced to model the training procedure, and a sample-wise approximation scheme for the adjoint backward SDE is applied to improve the efficiency of the stochastic optimal control solver, which is equivalent to the back-propagation for training the SNN. The convergence analysis is derived with and without convexity assumption for optimization of the SNN parameters. Especially, our analysis indicates that the number of SNN training steps should be proportional to the square of the number of layers in the convex optimization case. Numerical experiments are carried out to validate the analysis results, and the performance of the sample-wise back-propagation method for training SNNs is examined by benchmark machine learning examples.
translated by 谷歌翻译